Aerosol Particle Density Determination Using Light Scattering in Conjunction with Mass Spectrometry Eben S. Cross¹, Paul Davidovits¹, John T. Jayne², David K. Lewis^{2,3}, Manjula Canagranata², James Allan⁴, Doug Worsnop², and Tim Onasch² ¹Boston College, Chestnut Hill, MA 02467 ²Aerodyne Research Inc. Billerica, MA 01810 ³Connecticut College, New London, CT 06320 ⁴The University of Manchester, Manchester M60 1QD UK > ASP Meeting Boulder, CO October 25 – 27, 2006 Awknowledgements: NSF grant No. ATM-0525355. DOE grants No. DE-FG02-05ER63995 and No. DE-FG02-05ER84268. ESC funded by NASA Earth System Science graduate student fellowship #### **Features of the LS-AMS** - All particles that impact the vaporizer surface $(d_p > 180 \text{ nm})$, first pass through the laser beam and scatter light providing per particle measurements of scattered light (R_{LS}) , vacuum aerodynamic diameter (d_{va}) and chemical ion signal (R_{MS}) . (Panel 1 and 2) - Correlated R_{LS} (optical) and R_{MS} (chemical) measurements provide an in situ measurement of the collection efficiency of the AMS. (Panel 2) - $R_{LS} d_p$ calibration curve allows the determination of an optical diameter (d_o) . (Panel 3) - Using a single species calibration curve for spherical particles d_p is determined to +/- 10% accuracy across the refractive index range of 1.41 < n < 1.60. (Panel 4) - Combination of d_o and d_{va} provides a single particle density determination, $\rho_{LS} = (d_{va}/d_o)$. - The LS-AMS per particle density determination allows the mixing state of the ambient aerosol particles to be analyzed. - Single particle density (ρ_{LS}) distributions obtained for ambient aerosol particles at Chebogue Point, Nova Scotia are highly correlated with the chemical composition-based density (ρ_{cc}) and show that the ambient particles are internal mixed. (Panel 6 and 7) #### **Schematic of the LS-AMS** ### Correlated R_{LS} and R_{MS} Signals # **Experimental vs. Theoretical Scattering Response of the LS-AMS System** ## Effect of Refractive Index on R_{LS} ^{*}Note: n = real component to complex refractive index. Absorption component for oil droplets ($k \sim 0$) #### LS-AMS Deployment: Ambient Aerosol Analysis • Residence time of the aerosol particles in the atmosphere ~ days Real-Time Determination of Chemical Composition, ρ_{cc} and ρ_{LS} Average Single Particle Density (ρ_{LS}) (g/cm³)